On convergence of the Gauss-Newton method for convex composite optimization
نویسندگان
چکیده
The local quadratic convergence of the Gauss-Newton method for convex composite optimization f = h ◦ F is established for any convex function h with the minima set C, extending Burke and Ferris’ results in the case when C is a set of weak sharp minima for h.
منابع مشابه
A Gauss - Newton method for convex composite optimization 1
An extension of the Gauss-Newton method for nonlinear equations to convex composite optimization is described and analyzed. Local quadratic convergence is established for the minimization of h o F under two conditions, namely h has a set of weak sharp minima, C, and there is a regular point of the inclusion F(x) E C. This result extends a similar convergence result due to Womersley (this journa...
متن کاملConvergence Analysis of the Gauss-newton Method for Convex Inclusion Problems and Convex Composite Optimization
Using the convex process theory we study the convergence issues of the iterative sequences generated by the Gauss-Newton method for the convex inclusion problem defined by a cone C and a Fréchet differentiable function F (the derivative is denoted by F ′). The restriction in our consideration is minimal and, even in the classical case (the initial point x0 is assumed to satisfy the following tw...
متن کاملMajorizing Functions and Convergence of the Gauss--Newton Method for Convex Composite Optimization
We introduce a notion of quasi regularity for points with respect to the inclusion F (x) ∈ C, where F is a nonlinear Fréchet differentiable function from Rv to Rm. When C is the set of minimum points of a convex real-valued function h on Rm and F ′ satisfies the L-average Lipschitz condition of Wang, we use the majorizing function technique to establish the semilocal linear/quadratic convergenc...
متن کاملA Gauss-Newton method for convex composite optimization
An extension of the Gauss{Newton method for nonlinear equations to convex composite optimization is described and analyzed. Local quadratic convergence is established for the minimization of h F under two conditions, namely h has a set of weak sharp minima, C, and there is a regular point of the inclusion F(x) 2 C. This result extends a similar convergence result due to Womersley which employs ...
متن کاملGauss-Newton method for convex composite optimizations on Riemannian manifolds
A notion of quasi-regularity is extended for the inclusion problem F(p) ∈ C , where F is a differentiable mapping from a Riemannian manifold M to Rn . When C is the set of minimum points of a convex real-valued function h on Rn and DF satisfies the L-average Lipschitz condition, we use the majorizing function technique to establish the semi-local convergence of sequences generated by the Gauss-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 91 شماره
صفحات -
تاریخ انتشار 2002